

Communication

Difluoro-II-Bromane-Induced Oxidative Carbon–Carbon Bond-Forming Reactions: Ethanol as an Electrophilic Partner and Alkynes as Nucleophiles

Masahito Ochiai, Akira Yoshimura, Takeshi Mori, Yoshio Nishi, and Masaya Hirobe

J. Am. Chem. Soc., 2008, 130 (12), 3742-3743 • DOI: 10.1021/ja801097c

Downloaded from http://pubs.acs.org on February 8, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 1 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 02/28/2008

Difluoro- λ^3 -Bromane-Induced Oxidative Carbon–Carbon Bond-Forming Reactions: Ethanol as an Electrophilic Partner and Alkynes as Nucleophiles

Masahito Ochiai,* Akira Yoshimura, Takeshi Mori, Yoshio Nishi, and Masaya Hirobe

Graduate School of Pharmaceutical Sciences, University of Tokushima, 1-78 Shomachi, Tokushima 770-8505, Japan

Received December 27, 2007; E-mail: mochiai@ph.tokushima-u.ac.jp

To increase the complexity of a simple organic molecule using efficient, selective, and high-yielding methods under metal-free conditions is one of the paramount challenges in modern organic synthesis.¹ Development of oxidative carbon—carbon bond-forming reactions of alcohols with alkynes yielding α , β -unsaturated ketones with defined stereochemistry is an interesting example of achieving this goal but has never been reported. We report herein the first example for one-pot synthesis of conjugated enones **3** via oxidative coupling of alkynes **1** and primary alcohols using *p*-trifluorometh-ylphenyl(difluoro)- λ^3 -bromane (**2**)² under transition-metal-free conditions, in which very high levels of stereo- and regiocontrol were attained (Scheme 1).

Recently, we reported the stereoselective synthesis and characterization of (*E*)- β -fluorovinyl- λ^3 -bromanes.³ The reaction involves BF₃-catalyzed fluoro- λ^3 -bromanation of terminal alkynes with difluoro- λ^3 -bromane 2 and proceeds in a Markovnikov fashion vielding (*E*)- β -fluorovinyl- λ^3 -bromanes stereoselectively. Use of an alcohol as an additive in the reaction, however, dramatically changed the reaction course: for instance, reaction of 1-decyne (1b) with difluorobromane 2 in the presence of EtOH (2-4 equiv) and BF₃-Et₂O in dichloromethane afforded *trans*-2-dodecen-4-one (**3b**), instead of the β -fluoro-1-decenylbromane, in moderate yields (22-48%). After extensive studies on reaction conditions, we found an efficient procedure for the oxidative carbon-carbon bond forming reaction, which involves initial exposure of EtOH (5 equiv) to difluorobromane 2 (3 equiv) in the presence of BF_3 -Et₂O (2 equiv) at -30 °C for 30 min, followed by the addition of **1b**. The reaction (at -30 °C for 24 h) afforded a 77% yield of the trans-enone 3b stereoselectively with no evidence for formation of the Z-isomer (Table 1, entry 2). Use of chloroform or 1,2-dichloroethane gave comparable results, while more polar solvents (MeCN, AcOEt, Et₂O, DME, etc.) afforded low yields (less than 15%) of 3b. It should be noted that no formation of the enone 3b was detected, when difluoro- λ^3 -iodane p-CF₃C₆H₄IF₂ was used instead of bromane 2, and a large amount of 1b was recovered unchanged (entry 3).

A wide range of terminal alkynes efficiently undergo the λ^3 bromane-mediated oxidative coupling with ethanol under metalfree conditions and afforded moderate to good yields of transenones 3a-s in a exclusively stereo- and regioselective manner: no formation of the regioisomeric enals was detected. Yields of the conjugated enones 3j-m gradually increase with the increasing electron-withdrawing nature of the terminal acyloxy groups of 10undecynyl esters (entries 11-14), while in the reaction with phenylacetylenes the presence of more electron-donating para substituents increase the reaction efficiency (entries 17-20). To our delight, the coupling reactions of internal alkynes such as 2-decyne and 1-phenyl-1-propyne were found to be exclusively regioselective: thus, an ethylidene group derived from EtOH combined with the acetylenic carbon atom attached to a methyl group, while an oxo group attached to the other acetylenic carbon, yielding (E)-enones 3t and 3u stereoselectively (entries 21, 22).

Scheme 1

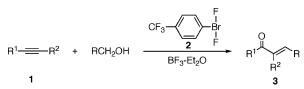
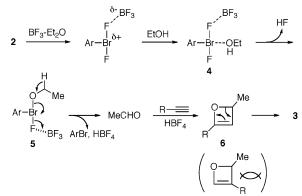
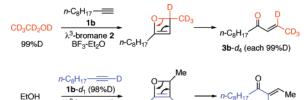


Table 1. $\lambda^3\text{-}\textsc{Bromane-Induced}$ Oxidative Coupling of Alcohols and Alkynes $\mathbf{1}^a$


	alkyne 1			
entry	R ¹	R ²	RCH ₂ OH (R)	3 yield (%) ^b
1	<i>n</i> -C ₆ H ₁₃	Н	Me	3a 76
2	$n-C_8H_{17}$	Н	Me	3b 77
3^c	$n-C_8H_{17}$	Н	Me	3b 0
4	Me ₂ CH(CH ₂) ₂	Н	Me	3c 60
5	$c-C_{6}H_{11}$	Н	Me	3d 55
6	Ph(CH ₂) ₂	Н	Me	3e 59
7	Cl(CH ₂) ₄	Н	Me	3f 50
8	Cl(CH ₂) ₉	Н	Me	3g 79
9	$Br(CH_2)_4$	Н	Me	3h 60
10	MeO(CH ₂) ₉	Н	Me	3i 34
11	AcO(CH ₂) ₉	Н	Me	3j 48
12	PhCO ₂ (CH ₂) ₉	Н	Me	3k 61
13	4-CF ₃ C ₆ H ₄ CO ₂ (CH ₂) ₉	Н	Me	31 64
14	3,5-(CF ₃) ₂ C ₆ H ₃ CO ₂ (CH ₂) ₉	Н	Me	3m 67
15	$MeO_2C(CH_2)_8$	Н	Me	3n 44
16	3,5-(CF ₃) ₂ C ₆ H ₃ O ₂ C(CH ₂) ₈	Н	Me	3o 51
17	4-MeOC ₆ H ₄	Н	Me	3p 78
18	$4-MeC_6H_4$	Н	Me	3q 62
19	Ph	Н	Me	3r 41
20	$4-CF_3C_6H_4$	Н	Me	3s 23
21	$n-C_7H_{15}$	Me	Me	3t 54
22	Ph	Me	Me	3u 84
23	Ph	Ph	Me	3v 65 ^d
24	$n-C_8H_{17}$	Н	Et	3w 39
25	<i>n</i> -C ₈ H ₁₇	Н	$4-NO_2C_6H_4$	3x 61 ^e

^{*a*} Conditions: an alcohol (5 equiv)/difluorobromane **2** (3 equiv)/BF₃– Et₂O (2 equiv)/Ar. ^{*b*} Isolated yields. ^{*c*} Difluoroiodane (p-CF₃C₆H₄IF₂), instead of **2**, was used. ^{*d*} *E*/*Z* ratio = 96:4. ^{*e*} *E*/*Z* ratio = 98:2.


A possible reaction mechanism shown in Scheme 2 involves an initial λ^3 -bromane-induced oxidation of EtOH to acetaldehyde, which probably proceeds via (1) activation of λ^3 -bromane **2** by the coordination of BF₃ that increases the polarization of the hypervalent F–Br–F bonding, (2) formation of the tetracoordinated species **4**, (3) generation of the alkoxy- λ^3 -bromane **5** via ligand exchange on Br(III), and (4) reductive β -elimination of a λ^3 -bromanyl group with a very high leaving group ability, producing acetaldehyde. [2 + 2] Cyclization of the aldehyde with alkynes, probably accelerated by HBF₄ generated *in situ*, would result in the regioselective formation of 2*H*-oxete **6**, because of steric factors, and finally the concerted electrocyclic conrotatory ring opening will afford the conjugated enones **3** selectively.

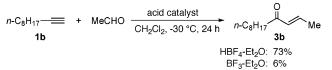
This mechanism expects that the terminal ethylidene group in **3b** originates from ethanol, while the α -vinylic hydrogen comes

Scheme 3

λ³-bromane 2 BF₃-Et₂O

Scheme 4

3b-d₁ (98%D)


from 1-decyne, which is compatible with the results obtained in the deuterium labeling experiments shown in Scheme 3.

Oxidation of EtOH to acetaldehyde with difluorobromane **2** does take place at -30 °C in the presence of BF₃–Et₂O, but in moderate yield (40%), probably because of the competing oxidative dimerization with formation of ethyl acetate (Scheme 4, Figure S1). Therefore, use of excess amounts of ethanol and bromane **2** is required for oxidative coupling with alkynes. Interestingly, the oxidation of EtOH also occurs even without using BF₃–Et₂O, when the reaction was carried out at room temperature (Figure S1). In marked contrast, difluoro- λ^3 -iodane *p*-CF₃C₆H₄IF₂ showed no evidence for the formation of acetaldehyde and recovered the alcohol unchanged under the BF₃-catalyzed conditions, which is in good agreement with the result shown in Table 1, entry 3.⁴

Lewis acid catalyzed⁵ or photochemical condensations⁶ of carbonyl compounds with alkynes, producing α , β -unsaturated ketones, are well documented.⁷ Intermediacy of a highly labile 2*H*-oxete has been firmly established by the isolation in a low-temperature reaction of hexafluoroacetone with ethoxyacetylene.⁸ We found that the condensation of 1-decyne (**1b**) with acetaldehyde in dichloromethane at -30 °C is catalyzed by Br ϕ nsted acid HBF₄- Et₂O yielding the enone **3b**, probably via the intermediate formation of 2*H*-oxete (Scheme 5). In contrast, Lewis acid BF₃-Et₂O was found to be less effective for the condensation.

Use of 1-propanol and *p*-nitrobenzyl alcohol in the oxidative coupling with **1b** afforded selectively the conjugated enones **3w** and **3x** in moderate to good yields (entries 24, 25); however, no formation of enones **3** was observed in the attempted reaction using

Scheme 5

Scheme 6

PhCH₂OH
$$\xrightarrow{\text{ArBrF}_2 2}_{\text{CH}_2\text{Cl}_2, \text{ rt, 3 h}}$$
 PhOCH₂F + PhCHO
7 69% 4%
PhCHO \leftarrow $\overrightarrow{\text{F}-\text{Br}-0}$ Ph $\xrightarrow{1,2-}_{\text{shift}}$ $\xrightarrow{\text{O}}_{\text{I}+\text{I}}$ $\xrightarrow{\text{F}-}$ 7

2-propanol and benzyl alcohol. Although 2-propanol is readily oxidized to acetone (70% yield) by difluorobromane **2** under the conditions, the subsequent [2 + 2] cyclization with **1b** does not take place, probably because of the increased steric demands of acetone. In the reaction of benzyl alcohol with **2**, oxidation to benzaldehyde competes with the more facile oxidative 1,2-phenyl rearrangement that produces fluoromethyl phenyl ether **7** (Scheme 6).⁹ Decreased migratory aptitude of the *p*-nitrophenyl group favors oxidation of *p*-nitrobenzyl alcohol to the aldehyde, which, in turn, results in formation of the coupling product **3x**.

In summary, the difluoro- λ^3 -bromane-induced oxidative coupling of alcohols with alkynes was shown to directly afford the construction of conjugated enones. The reaction is highly stereo- and regioselective and avoids the use of transition metal catalysts.

Supporting Information Available: Experimental details and Figures S1. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Guillena, G.; Ramon, D. J.; Yus, M. Angew. Chem., Int. Ed. 2007, 46, 2358.
- (2) (a) Frohn, H. J.; Giesen, M. J. Fluorine Chem. 1998, 89, 59. (b) Ochiai, M.; Nishi, Y.; Goto, S.; Shiro, M.; Frohn, H. J. J. Am. Chem. Soc. 2003, 125, 15304.
- (3) Ochiai, M.; Nishi, Y.; Mori, T.; Tada, N.; Suefuji, T.; Frohn, H. J. J. Am. Chem. Soc. 2005, 127, 10460.
- (4) This is probably due to a greater oxidizing ability of difluorobromane 2 compared to that of *p*-CF₃C₆H₄IF₂. In fact, the ionization potential of PhBr (8.98 eV) is larger than that of PhI (8.69 eV). See: *CRC Handbook of Chemistry and Physics*; Lide, D. R., Ed.; CRC: Boca Raton, FL, 1992.
- (5) (a) Hayashi, A.; Yamaguchi, M.; Hirama, M. Synlett **1995**, 195. (b) Vieregge, H.; Schmidt, H. M.; Renema, J.; Bos, H. J. T.; Arens, J. F. Recl. Trav. Chim. Pays-Bas **1966**, 85, 929. (c) Fuks, R.; Viehe, H. G. Chem. Ber. **1970**, 103, 564. (d) Rhee, J. U.; Krische, M. J. Org. Lett. **2005**, 7, 2493. (e) Viswanathan, G. S.; Li, C.-J. Tetrahedron Lett. **2002**, 43, 1613.
- (6) (a) Buchi, G.; Kofron, J. T.; Koller, E.; Rosenthal, D. J. Am. Chem. Soc. 1956, 78, 876. (b) Miyamoto, T.; Shigemitsu, Y.; Odaira, Y. Chem. Commun. 1969, 1410.
- (7) For intramolecular versions of alkyne-carbonyl coupling to form conjugated enones, see: (a) Harding, C. E.; Stanford, G. R. J. Org. Chem. 1989, 54, 3054. (b) Wempe, M. F.; Grunwell, J. R. J. Org. Chem. 1995, 60, 2714. (c) Balf, R. J.; Rao, B.; Weiler, L. Can. J. Chem. 1971, 49, 3135. (d) Sisko, J.; Balog, A.; Curran, D. P. J. Org. Chem. 1992, 57, 4341. (e) Kurtz, K. C. M.; Hsung, R. P.; Zhang, Y. Org. Lett. 2006, 8, 231.
- (8) (a) Middleton, W. J. J. Org. Chem. **1965**, 30, 1307. (b) Bosch, G.; Bos, H. J. T.; Arens, J. F. Recl. Trav. Chim. Pays-Bas **1966**, 85, 567. (c) Friedrich, L. E.; Bower, J. D. J. Am. Chem. Soc. **1973**, 95, 6869. (d) Baukov, Yu. I.; Zaitseva, G. S.; Livantsova, L. I.; Bekker, R. A.; Savostyanova, I. A.; Oleneva, G. I.; Lutsenko, I. F. Zh. Obsh. Khim. **1981**, 51, 1304. (e) Martino, P. C.; Shevlin, P. B. J. Am. Chem. Soc. **1980**, 102, 5430.
- (9) For oxidation of benzyl alcohols to fluoromethyl aryl ethers with XeF₂, see: Stavber, S.; Zupan, M. *Tetrahedron Lett.* **1993**, *34*, 4355.

JA801097C